Cationic Nitrosyl Complexes of Nickel with Hybrid Bidentate Ligands containing Phosphorus and Nitrogen or Sulfur Donor Atoms

Centro di Studio sulla Stabilitci e Reattivitri dei Composti

Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, C.N.R., Istituto di Chimica Analytica, University of Padua, 35100 Padua, Italy

Received November 2, 1979

A number of nitrosyl complexes of nickel of the type $[Ni(NO)XL_2]$ and $[Ni(NO)L_3]$ ⁺ are known in which L is a phosphorus ligand such as primary $[1]$, secondary $[1]$, tertiary $[1-8]$, phosphines or phosphites [9, 10]. The compounds so far studied by X-ray analysis are pseudotetrahedral and exhibit 'linear' Ni-N-O groups with angles in the range $161 180^\circ$ [4-7, 9].

In connection with an investigation concerning the syntheses and properties of phosphino-nitrosyl complexes of nickel $[1]$ we have now prepared $\{NINO\}$ $[10]$ derivatives with hybrid bidentate ligands containing one phosphorus and one nitrogen or sulfur donor atom. Wtih the ligands used, 1-(2'-pyridyl)-2-(diphenylphosphino)ethane (P-Py) and 1-(thioethyl)-2-(diphenylphosphino)ethane (P-SEt), compounds of composition [Ni(NO)(P-L)₂] BPh₄ have been obtained:

$$
(C_6H_5)_2P-CH_2CH_2-S-CH_2CH_3
$$
\n
$$
P-SEI
$$
\n
$$
P-SEI
$$
\n
$$
P-Py
$$

An interesting feature of these complexes is that they are 'fluxional' in solution and we have conducted. and now report, a detailed study of their solution structure and dynamics by variable-temperature IR and NMR spectroscopies.

Experimental

I.r. spectra were recorded on a Perkin-Elmer 457 spectrophotometer. Visible spectra were determined on an Optica CF4NI spectrophotometer. Conductance data were obtained using a LKB model 3216B conductance bridge. N.m.r. spectra were recorded on a Bruker WP-60 spectrometer operating at 14.09 kG in the FT mode (${}^{1}H$ and ${}^{31}P$) and on a Bruker 90 MHz spectrometer (^1H) . All materials were of reagent grade quality. The solvents were purified by standard methods.

The published procedures were used to prepare the ligands I-(thioethyl)-2-(diphenylphosphino)ethane (P-SEt) $[11]$ and $I(2'-pyridyl)$ -2- $(diphenylphosphino)$ ethane $(P-Py)$ [12].

Preparation of the Complexes

 $[Ni(NO)(PL)_2]$ BPh_4 (P-L = P-SEt, P-Py)

A suspension of $[Ni(P-SEt)_2]$ $(CIO_4)_2$ [11] or $[Ni(P-Py)₂](CIO₄)₂ [12]$ (2 mmol) in 25 ml of methanol was treated with NaNO_2 (0.14 g, 2 mmol). The mixture was refluxed under a carbon monoxide atmosphere for 30 min, and the resulting red-violet solution was cooled at room temperature. Sodium tetraphenylborate $(1.37 \text{ g}, 4 \text{ mmol})$ in 15 ml of methanol was added and the resulting violet precipitate was filtered off, washed with methanol, and then recrystallized from dichloromethane-methanol.

(a) $[Ni(NO)(P-SEt)_2]BPh_4$, m.p. 68–70 °C (decomp.) (Found: C, 70.71; H, 6.08; N, 1.48. C_{56} H₅₈ NOS₂ P₂ Ni requires C, 70.25; H, 6.11; N, 1.46%); conductivity 62 S cm² mol⁻¹ (ca. 10^{-3} M solution in nitromethane).

(b) $[Ni(NO)(P-Py)_2] BPh_4$, m.p. 163-164 °C (decomp.) (Found: C, 74.58; H, 5.65; N, 4.14. C_{62} H₅₆N₃OP₂Ni requires C, 74.95; H, 5.68; N, 4.23%); conductivity 68 S cm² mol⁻¹ (ca. 10^{-3} *M* solution in nitromethane).

Results and Discussion

The $[Ni(NO)(P-L)₂]$ BPh₄ (P-L = P-Py, P-SEt) complexes were prepared according to the method of Booth and Chatt [13]. The compounds were characterized by elemental analysis and were found to be diamagnetic and 1:1 electrolytes in nitromethane. The ir spectra of both compounds exhibit a strong NO stretching vibration in the 1770–1820 cm^{-1} region. The visible spectra are similar to each other and show two bands around 370 and 500 nm with a shoulder on the low-energy side at about 550 nm. Infrared and electronic spectral data (see Table I) are strictly related to those reported for the $[Ni(NO)]$. L_3 ⁺ complexes (L = phosphorous ligand) which have pseudotetrahedral geometry and contain linear $Ni-N-O$ groups $[1-10]$. It seems likely that also the $[Ni(NO)(P-L)₂]$ ⁺ cations could be formulated as nickel(0) derivatives and expected to be four coordinate and tetrahedral.

Tetracoordination is supported in the case of $[Ni(NO)(P-Py)₂]$ ⁺ by ir spectrum which shows in the $1550-1650$ cm⁻¹ region (pyridine ring deformation mode) absorptions attributable [14] both to coordinated $(1604, 1577 \text{ cm}^{-1})$ and uncoordinated $(1593, 1582, 1567 \text{ cm}^{-1})$ pyridyl groups. The data are

TABLE I. Spectroscopic Data of the Nickel Complexes.

 $\frac{1}{\sqrt{1-\frac{1$ In CH₂Cl₂. In CDCl₃. $d = broad, s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. \nIn C12C12.$ e AB spin system. $t_{\alpha\text{-ring p}}$
CH₂--. 1 -CH₃. 1 S-CH₂--.

consistent with the structure I in which one Pyramid in which one Pyramid in which one Pyramid in which one Pyr consistent with the structure I in

 T [Ni(NO)(P-L)2⁺ cations are stereochemically are π rigid $\left[\text{N}\left(\text{N}\right)\left(\text{N}-\text{L}\right)\right]$ cations are stereochemically non rigid at ambient temperature on the nmr time scale but became stereochemically rigid at low temperature. The room temperature ${}^{31}P[{^{\text{I}}H}]$ nmr spectra of both complexes show a single sharp resonance. By lowering the temperature the singlet broadens and
a resolved spectrum is obtained at 213 K for $\frac{1}{2}$ is considered at 213 K for $\frac{1}{2}$ and $\frac{1}{2}$ in CDC13 and at 213 K for $\frac{1}{2}$ $\left[\text{N}\right]$ (NO)(P-Fy)₂) in CDC₁² and at 190 K for $\left[\text{N}\right]$ $\left(\text{NUM}(r\text{-SEL})_2\right)$ in Un_2Cl_2 . The low temperature B_{min} is shown in Fig. 1. The observed ax pattern in Fig. 2. The observed A_{min} or B_{min} or $BPh₄$ is shown in Fig. 1a. The observed AX pattern is that expected for a structure in which only a P-SEt molecule behaves as chelate ligand. The phosphorus resonance at lowest field can be assigned to the phosphorus of a chelate P-SEt molecule, in agreement with the observation that phosphorus-containing five-membered ring systems show anomalous large down-field $3^{1}P$ coordination chemical shift [15].

The low temperature limiting spectrum of [Ni-
(NO)(P-Py)₂] BPh₄ (Fig. 1b) shows a pattern $(\text{IVO}_{\text{A}} \cdot \text{F}_{\text{A}})$ contains the (F_{B}) contains subsetsion. The 31P coordinates of 31P coord $\frac{1}{2}$ characteristic of an AB spin system. The $\frac{1}{2}$ recordination shifts for chelate (six-membered ring) and unchelated P-Py ligand are similar and cannot be used. for structural assignments as in the case of P-SEt. However the coordination of pyridyl group can be verified from the chemical shift of the α -proton of the pyridine ring. In the room temperature ¹H nmr spec-

Hig. 1. Variable-temperature "P{H} nmr spectrum of (a) $[Ni(NO)(P-SEL)_2]BPh_4$ in CH_2Cl_2 , and (b) $[Ni(NO)-(P-Py)_2]BPh_4$ in CDCl₃.

 \mathbf{r} trum of the \mathbf{r} the observation, the o-proton, the otrum of the $[Ni(NO)(P+Y)]$ cation, the α -protor resonance appears as a broad doublet at τ 0.90. Lowering the sample temperature produces a complex sequence of changes and at -65° C the ¹H nmr spectrum shows two α -proton resonances as doublets at τ 0.29 and 1.48, which can be attributed to the presence of chelated and unchelated ligand. The position of resonance at τ 1.48 corresponds with that of the free ligand $(\tau = 1.42)$ while the signal at τ 0.29 can be attributed to the α -proton of a chelated P-Pv $\frac{1}{\sqrt{2}}$

The downfield shift is due to coordination of pyridyl groups which causes the α -proton to be deshielded. The low temperature ${}^{1}H$ and ${}^{31}P$ nmr data for both $[Ni(NO(P-L)]^+$ cations are consistent with a tetracoordinate structure in which only a P-L molecule acts as chelating ligand. Since nmr data did not distinguish unambiguously between a pseudotetrahedral (Ni⁰-(NO⁺)) or a square planar (Ni^{II}- (NO)) structure we have examined the ir spectrum of the $[Ni(NO)(P-L)]$ BPh₄ complexes in CH_2Cl_2 . solution over the temperature range +20 $^{\circ}$ to -80 $^{\circ}$ C. No substantial change was observed and no new bands in the NO stretching region appeared. Thus it is concluded that the nitrosyl compounds maintain also at low temperature the pseudotetrahedral struc- T e I T

The observed variable temperature nmr behaviour is consistent with an intramolecular rearrangement which leads to interchange of the roles of the monoand bidentate P-L ligands. A dissociative mechanism involving opening of chelate ring to give a threecoordinate intermediate appears to be reasonable in view of the saturated nature of $[Ni(NO)(P-L)₂]$ ^{*} cations. However, if an intramolecular redox process $Ni^0(NO^+) \geq Ni^{II}(NO)$ is energetically accessible exchange might well occur via an associative pathway, with formation of a five-coordinate intermediate.

We thank Mr. G. Gomiero and Mr. A. Ravazzolo

We thank Mr. G. Gomiero and Mr. A. Ravazzolo for technical assistance.

References

- *2 P. Rigo, to be submitted for publication. 3* R. D. Feltham, *Inorg. Chem., 3, 116* (1964).
- 4 K.D. Felulain, *J. Horg. Nucl. Chem., 17, 3*
2 D.D. Eskkom *Juang Cham.* 2 116 (1964).
- 3 R. D. Feltham, *Inorg. Chem., 3*, 116 (1964).
4 J. H. Enemark, *Inorg. Chem., 10,* 1952 (1971).
-
- 5 J. H. Enemark, *Inorg. Chem.*, 17, 3552 (1978). $\sum_{n=1}^{\infty}$
- *7 D. Defensive and D. W. Moor, Inorg. Chem., 11, 1175*
- *IS, 1555* (1976). 8×10^{10} Valia, C. A. Gilliardi and L. Saccom, *Inorg.* Chem.,
- *L*₂, 1999 (1279).
C_{hemad} D_E Lehnson σ σ . D. Bilauuli, D. P. Johnson and I. W. Matheson, σ
- *I II II Noinan*, *C I Div*, *I C* 10 J. D. McIllels, C. J. MA, J. C. Claruy and J. G. Verkade, *J. P. Albright, F. L. Claru*y and J. G. Verkade,
- *ROR. Chem., 17, 103* (1975).
L. O. Albeight, E. J. Tons 10 J. O. Alblight, T. L. Tanzona and J. O. Volkado, J.
Cloard Chem. 6 775 (1976).
- Coord. Chem., 6, 225 (1976).
11 P. Rigo and M. Bressan, *Inorg. Chem., 14*, 1491 (1975).
- $\frac{1}{n}$. $\frac{1}{n+1}$. 12 G. Onlig and M. Maser, *D. Anorg. Ang.* Chem., *J.*
(1966).
- (1700).
12 C. Boeth and J. Chett, J. Chem. Son. **2000** (1062).
- $(1, 1)$
- 14 W. V. Dahloff and S. M. Nelson, J. Chem. Soc. A, 2148 (1971).
- 15 P. E. Garrou, Inorg. Chem., 14, 1453 (1975) and references cited therein.